首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43454篇
  免费   4340篇
  国内免费   2731篇
化学   25039篇
晶体学   559篇
力学   2829篇
综合类   276篇
数学   4610篇
物理学   17212篇
  2023年   627篇
  2022年   692篇
  2021年   940篇
  2020年   1179篇
  2019年   1154篇
  2018年   1061篇
  2017年   936篇
  2016年   1496篇
  2015年   1354篇
  2014年   1788篇
  2013年   2638篇
  2012年   3374篇
  2011年   3744篇
  2010年   2412篇
  2009年   2389篇
  2008年   2594篇
  2007年   2524篇
  2006年   2370篇
  2005年   1933篇
  2004年   1572篇
  2003年   1271篇
  2002年   1156篇
  2001年   1375篇
  2000年   1069篇
  1999年   1063篇
  1998年   852篇
  1997年   845篇
  1996年   829篇
  1995年   687篇
  1994年   651篇
  1993年   538篇
  1992年   531篇
  1991年   463篇
  1990年   384篇
  1989年   313篇
  1988年   251篇
  1987年   219篇
  1986年   194篇
  1985年   193篇
  1984年   144篇
  1983年   97篇
  1982年   68篇
  1981年   64篇
  1980年   33篇
  1979年   32篇
  1978年   36篇
  1977年   41篇
  1976年   47篇
  1975年   55篇
  1974年   47篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
81.
82.
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.  相似文献   
83.
We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform,which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the Ga As layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO2 mask on the thermal stress are studied. It is found that the SiO2 mask and V-groove play a crucial role in the stress of the Ga As layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO2 mask are both 100 nm, the Ga As layer is subjected to the minimum stress. Furthermore,Comparing with the planar substrate, the average stress of the Ga As epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality Ga As films on patterned Si substrates.  相似文献   
84.
Journal of Radioanalytical and Nuclear Chemistry - The kinetics of Co ions sorption on CoTreat® was investigated in the 5–40 mg/L concentration range at a bulk temperature of...  相似文献   
85.
Mass spectrometry (MS) driven metabolomics is a frequently used tool in various areas of life sciences; however, the analysis of polar metabolites is less commonly included. In general, metabolomic analyses lead to the detection of the total amount of all covered metabolites. This is currently a major limitation with respect to metabolites showing high turnover rates, but no changes in their concentration. Such metabolites and pathways could be crucial metabolic nodes (e.g., potential drug targets in cancer metabolism). A stable-isotope tracing capillary electrophoresis–mass spectrometry (CE-MS) metabolomic approach was developed to cover both polar metabolites and isotopologues in a non-targeted way. An in-house developed software enables high throughput processing of complex multidimensional data. The practicability is demonstrated analyzing [U-13C]-glucose exposed prostate cancer and non-cancer cells. This CE-MS-driven analytical strategy complements polar metabolite profiles through isotopologue labeling patterns, thereby improving not only the metabolomic coverage, but also the understanding of metabolism.  相似文献   
86.

Gaussian modulation is one of the key steps for the implementation of continuous-variable quantum key distribution (CVQKD) schemes. However, imperfection in the Gaussian modulation may introduce modulation noise that can deteriorate the performance of CVQKD systems. In this paper, we mainly investigate how to improve the performance of a CVQKD system from different aspects. First, we explore the several different origins, impacts and monitoring schemes for the modulation noise in detail. Then, we discuss the practical performance of a CVQKD system with an untrusted noise model and neutral party model, respectively. These analyses indicate that the neutral party model should be reasonably regarded as a general noise model, which will passively and greatly raise the performance of the system. Further, we propose a dynamic auto-bias control scheme to actively resist the modulation noise which comes from the drift of bias point of the amplitude modulator. Together these methods contribute to the improvement of the practical performance of CVQKD systems with imperfect Gaussian modulation.

  相似文献   
87.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   
88.
The design of DNA-based logic circuits has become an active research field in DNA nanotechnology and holds great potential in intelligent bioanalysis. To date, although many DNA-based logic systems have been realized, the implementation of advanced logic functions is still challenging, especially with simple and homogeneous compositions. Herein, by integrating two DNA tetraplex structures (G-quadruplex and i-motif), a completely label-free logic platform with high scalability was established, with which a series of advanced functions were realized, including arithmetic (adders and subtractors) and nonarithmetic ones (majority and dual-transfer gates). Furthermore, the platform was also applied as an intelligent biosensor to coanalyze two cancer-related micro-RNAs with high sensitivities and specificities. Considering the excellent versatility, expandability, and biocompatibility, the platform may promote the development of DNA computing and hold great potential in multiparameter sensing and medical diagnosis.  相似文献   
89.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
90.
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号